Valproic acid, a molecular lead to multiple regulatory pathways.

نویسندگان

  • M Kostrouchová
  • Z Kostrouch
  • M Kostrouchová
چکیده

Valproic acid (2-propyl pentanoic acid) is a drug used for the treatment of epilepsy and bipolar disorder. Although very rare, side effects such as spina bifida and other defects of neural tube closure indicate that valproic acid interferes with developmental regulatory pathways. Recently obtained data show that valproic acid affects cell growth, differentiation, apoptosis and immunogenicity of cultured cancer cells and tumours. Focused studies uncovered the potential of valproic acid to interfere with multiple regulatory mechanisms including histone deacetylases, GSK3 alpha and beta, Akt, the ERK pathway, the phosphoinositol pathway, the tricarboxylic acid cycle, GABA, and the OXPHOS system. Valproic acid is emerging as a potential anticancer drug and may also serve as a molecular lead that can help design drugs with more specific and more potent effects on the one side and drugs with wide additive but weaker effects on the other. Valproic acid is thus a powerful molecular tool for better understanding and therapeutic targeting of pathways that regulate the behaviour of cancer cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The multifaceted therapeutic potential of valproic acid beyond CNS axis

Valproic acid is widely used as an anti-epileptic globally. Anti-epileptic action is mediated by Gamma Amino Butyric Acid (GABA) receptors. In past and recently, several other clinical outcomes have been proposed by various studies. These under-reported clinical actions apart from anti-epileptic activity are mediated by various intracellular and extracellular pathways. Several mechanisms like H...

متن کامل

Effect of valproic acid on SOCS1, SOCS3, JAK1, JAK2, STAT3, STAT5A, and SOCS5B in hepatocellular carcinoma HepG2 cell line

Background and aim: Aberrant activation of diverse intracellular signaling pathways involved in differentiation, cell growth, apoptosis. These pathways include known oncogenic pathways such as Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. The JAK/STAT signaling pathway plays an important role in many cellular functions. This pathway can be activated by variou...

متن کامل

Bacillus thuringiensis - Mediated Priming Induces Jasmonate/Ethylene and Salicylic Acid-Dependent Defense Pathways Genes in Tomato Plants

Bacillus thuringiensis Berliner as a biological control agent can play a crucial role in the integrated management of a wide range of plant pests and diseases. B. thuringiensis is expected to elicit plant defensive response through plant recognition of microbe-associated molecular patterns (MAMPs), however, there is little information on the molecular base of induced systemic ...

متن کامل

Valproic Acid, a Drug with Multiple Molecular Targets Related to Its Potential Neuroprotective Action

Valproic acid (VA) is used worldwide as an antiepileptic drug and a mood stabilizer. Recently, VA was shown to act on cell growth, differentiation and apoptosis, by regulating gene expression at the molecular level, through epigenetic mechanisms. Thus, VA was demonstrated to act on the chromatin remodeling what is a consequence of the drug inhibition of histone deacetylases (HDACs) activity. Ot...

متن کامل

Valproic Acid Ameliorates Locomotor Function in the Rat Model of Contusion via Alteration of Mst1, Bcl-2, and Nrf2 Gene Expression

Background: As a novel pro-apoptotic kinase, Mammalian sterile 20–like kinase 1 (Mst1) promotes programmed cell death in animal models of inflammatory diseases. This research aimed to determine the level of expression of Mst1 gene in a rat model of spinal cord injury (SCI) treated with valproic acid (VPA). Methods: Animals were divided into four groups: Contused animals (untreated); laminectom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Folia biologica

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 2007